The Accumulated Experience Ant Colony for the Traveling Salesman Problem

نویسندگان

  • James Montgomery
  • Marcus Randall
چکیده

Ant colony optimization techniques are usually guided by pheromone and heuristic cost information when choosing the next element to add to a solution. However, while an individual element may be attractive, usually its long term consequences are neither known nor considered. For instance, a short link in a traveling salesman problem may be incorporated into an ant’s solution, yet, as a consequence of this link, the rest of the path may be longer than if another link was chosen. The Accumulated Experience Ant Colony uses the previous experiences of the colony to guide in the choice of elements. This is in addition to the normal pheromone and heuristic costs. Two versions of the algorithm are presented, the original and an improved AEAC that makes greater use of accumulated experience. The results indicate that the original algorithm finds improved solutions on problems with less than 100 cities, while the improved algorithm finds better solutions on larger problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

Ant colonies for the traveling salesman problem

We describe an artificial ant colony capable of solving the traveling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. Computer simulations demonstrate that the artificial ant colony is capable of generating good solutions to bo...

متن کامل

Ant colonies for the traveling salesman problem TR / IRIDIA / 1996

We describe an artificial ant colony capable of solving the traveling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. Computer simulations demonstrate that the artificial ant colony is capable of generating good solutions to bo...

متن کامل

The Accumulated Experience Ant Colony for the Travelling Salesman Problem

Ant colony optimisation techniques are usually guided by pheromone and heuristic cost information when choosing the next element to add to a solution. However, while an individual element may be attractive, usually its long term consequences are neither known nor considered. For instance, a short link in a TSP may be incorporated into an ant’s solution, yet, as a consequence of this link, the r...

متن کامل

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Computational Intelligence and Applications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2003